Indian Statistical Institute, Bangalore

B.Math (Hons.) II Year, Second Semester Mid-Sem Examination Optimization

Time: 3 hours February 23, 2011 Instructor: Pl.Muthuramalingam Maximum marks: 40

1. State Kuhn - Tucker theorem for convex sets and concave functions.

|3|

2. Let J an *an* interval of R and $f: J \to R$ any concave function. Let $x_1 < x_2 < x_3$ be in J. Find an inequality connecting the difference quotients

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}, \quad \frac{f(x_3 \mid -f(x_1))}{x_3 - x_1}, \quad \frac{f(x_3) - f(x_2)}{x_3 - x_2},$$

it. [4]

and prove it.

3. Assume that $g: J \longrightarrow R$ where J is an interval of R satisfies

$$\frac{g(x_2) - g(x_1)}{x_2 - x_1} \geq \frac{g(x_3) - g(x_2)}{x_3 - x_2}$$

for all $x_1 < x_2 < x_3$ in J. Show that g is a concave function. [3]

4. Let $1 \leq k < n$. Let $\mathbf{g} : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ be a \mathbb{C}^2 function if $\mathbf{g} = (g_1, g_2, \cdots, g_k)$ and $g_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ is \mathbb{C}^2 for each $i = 1, 2, \cdots, k$. Let $\mathbf{C} \in \mathbb{R}^k$ be fixed. Let

$$S = \{ \mathbf{x} \in R^n : \mathbf{g}(\mathbf{x}) = \mathbf{C} \}$$

. Assume that $\mathbf{x}^* \in S$ and the square matrix $\left(\begin{pmatrix} \frac{\partial g_i}{\partial x_j} & (\mathbf{x}^*) \end{pmatrix} \right)$, $i = 1, 2, \cdot k$; $j = n, n - 1, \cdots n - k + 1$ is invertible so that for $\mathbf{x}^* = (x_1^* \cdots, x_k^*, x_{k+1}^* \cdots, x_n^*)$ there exists a C' function $\mathbf{h} : N \longrightarrow R^k$, $(x_1^*, \cdots, x_{n-k}^*) \in N, N$ open with $\mathbf{h}(x_1^*, \cdots, x_{n-k}^*) = (x_{n-k+1}^*, \cdots, x_n^*)$ and $\mathbf{g}(x_1, \cdots, x_{n-k}, \mathbf{h}(x_1, \cdots, x_{n-k})) = \mathbf{C}$, for all $(x_1, \cdots, x_{n-k}) \in N$. Let $\mathbf{h} = (h_1, h_2, \cdots, h_k)$. Show that each of the vectors $(e_j, \partial_{x_j} \mathbf{h}(\mathbf{a}))^t$ for $j = 1, 2, \cdots n - k$ is in kernel (\equiv Null space) $\mathbf{g}'(\mathbf{x}^*)$. Here e_j is the row vector of length n - k with 1 in the j th place and 0 elsewhere. Also $\mathbf{a} = (x_1^*, \cdots, x_{n-k}^*)$. [5]

5. Let $V = A \bigoplus B$ where A, B, V are all finite dimensional linear spaces. If $a_1, a_2, \dots a_r \varepsilon A$ are linearly independent and $b_1, b_2, \cdot b_r \varepsilon B$, then $\nu_1, \nu_2, \dots \nu_r$, given by $\nu_j = (a_j, b_j)$ are linearly independent. [2] 6. (continuation of 4). Show that kernel $\mathbf{g}'(\mathbf{x}^*) =$

$$\{(a_1, a_2 \cdots, a_{n-k}, \sum_j a_j \partial_{x_j} h_1(\mathbf{a}), \cdots, \sum_j a_j \partial_{x_j} h_k(\mathbf{a}))^t$$
$$a_i \varepsilon R \text{ for } i = 1, 2, \cdots n - k; j = 1, 2, \cdots n - k\}.$$
 [5]

- 7. Let $g : \mathbb{R}^n_+ \longrightarrow \mathbb{R}$ be any continuous function and $y \in \mathbb{R}$ is fixed. Let $\mathbf{w} = (w_1, w_2, \cdots, w_n)$ with $w_i > 0$ for each i. Show that min $\{\mathbf{w}.\mathbf{x}: \mathbf{x} \in \mathbb{R}^n_+, g(\mathbf{x}) \ge y\}$ is attained. Here $\mathbb{R}^n_+ = \{(x_1, x_2, \cdots, x_n): x_i \ge 0 \text{ for each } i\}.$ [4]
- 8. Let $1 \leq k < n, \mathbf{h} : \mathbb{R}^n \longrightarrow \mathbb{R}^k$ be C' and $\mathbf{h} = (h_1, h_2 \cdots, h_k)$. Let $\mathbf{x}^* \in \mathbf{R}^n$. Assume that the $k \times k$ square matrix

$$\left(\left(\partial_{x_j}h_i(\mathbf{x}^*)\right)\right), i, j == 1, 2, \cdots k$$

is invertible, and $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$. Show that there exists $\sigma > 0$ and δ : $(-\sigma, \sigma) \to \mathbb{R}^n$ such that $(h_1(\delta(t)) - t, h_2(\delta(t)), \cdots h_k(\delta(t))) = \mathbf{0}$ for all t in $(-\sigma, \sigma)$ and $\delta(0) = \mathbf{x}^*$. [4]

- 9. State and prove Lagrange theorem. [3+4]
- 10. Let $f, h : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by $f(x, y) = -(x^2 + y^2)$, $h(x, y) = (x - 1)^3 - y^2$, $\mathbb{D} = \{(x, y) : h(x, y) \ge 0\}$ a) Show that $f(1, 0) = \max_{\mathbb{D}} f$. [3]
 - b) Show that we can not find $\lambda \geq 0$ such that

$$\left(\frac{\partial f}{\partial x} + \lambda \frac{\partial h}{\partial x}\right) at(1,0) = 0$$

and

$$\left(\frac{\partial f}{\partial y} + \lambda \frac{\partial h}{\partial y}\right) at(1,0) = 0.$$
[1]